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ABSTRACT

 

An investigation has been performed on the use of low-thermal conductivity, ceramic substrates for
hot films intended to measure skin friction. Hot films were deposited on two types of ceramic substrates.
Four hot films used composite-ceramic substrates with subsurface thermocouples (TCs), and two hot
films were deposited on thin Macor

 

®

 

 substrates. All six sensors were tested side by side in the wall of the
NASA Glenn Research Center 8-ft by 6-ft Supersonic Wind Tunnel (SWT). Data were obtained from
zero flow to Mach 1.98 in air. Control measurements were made with three Preston tubes and two
boundary-layer rakes. The tests were repeated at two different hot film power levels. All hot films and
subsurface TCs functioned throughout the three days of testing. At zero flow, the films on the
high-thermal conductivity Macor

 

®

 

 substrates required approximately twice the power as those on the
composite-ceramic substrates. Skin-friction results were consistent with the control measurements.
Estimates of the conduction heat losses were made using the embedded TCs but were hampered by
variability in coating thicknesses and TC locations.

 

NOMENCLATURE

Acronyms

 

APSO adjustable-protrusion surface-obstacle

BL boundary layer

HRSI high-temperature reusable surface insulation

NASA National Aeronautics and Space Administration

RCG reaction cured glass

RTD resistance temperature detector

SWT 8-ft by 6-ft Supersonic Wind Tunnel

TC thermocouple

 

Symbols
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calibration constant slope, 
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calibration constant offset, 
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p

 

specific heat, J/kgK
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hot film current, amps
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thermal conductivity, W/mK
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time, sec
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temperature, K
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T

 

temperature difference between film and fluid, K

density, kg/m
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w

 

wall shear stress, N/m

 

2

 

µ

 

dynamic viscosity, kg/ms

perpendicular

 

Subscripts

 

f fluid property

s substrate property

w wall property

 

INTRODUCTION

 

Measuring skin friction on the surfaces of wind tunnel models, aircraft, watercraft, and other vehicles
is crucial to validating computational fluid dynamics and boundary-layer codes. Skin-friction
measurement is also crucial to characterizing the effectiveness of skin-friction reduction schemes.
Accurate skin-friction measurements are generally more difficult to attain than more fundamental flow
measurements such as pressure and temperature. The available methods of skin-friction measurement
include floating-element gages,

 

1,2,3,4

 

 total pressure rakes to determine boundary-layer profiles,
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Stanton
gages or Preston tubes to measure the difference between total and static pressure at the surface,
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the
observation of oil flow on the surface,
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 and surface-mounted hot films.
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Of these methods,
floating-element gages are the most direct method of measurement, but they still require a static
calibration. All other methods are indirect and require some type of flow calibration or analysis. These
calibrations are usually dependent on flow conditions (that is, Reynolds number, laminar as opposed to
turbulent, subsonic as opposed to supersonic). Supplementary measurements often are required to
determine the flow condition and then determine the calibration to use.

Hot film sensors, consisting of a metallic film on an electrically nonconducting substrate, have been
used to measure skin friction as early as 1931.
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The film is kept at a fixed elevated temperature relative
to that of the local flow, and the required electrical power is measured. The rate of heat transfer to the
flow is related to the velocity gradient at the surface, which in turn is related to the skin friction. Because
of their small thermal mass, hot films quickly respond to fluctuations in the local flow and thus are used
to determine flow direction (with multiple hot films) and local flow regime (laminar, transitional, or
turbulent). Fabricating hot film substrates from low-thermal conductivity ceramics serves to decrease
heat conduction to the substrate. Furthermore, the layered nature of the fabrication allows the installation
of thermocouple (TC) junctions underneath the hot film, which can provide additional information on the
conduction heat loss.

When the hot film is used to measure skin friction, the heat supplied to maintain an elevated
temperature is related to skin friction by a variety of calibrations stemming from both experiment and
analysis. Most are of the following form
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where 

 

T

 

 is the temperature difference between the film and the fluid. The information available from
the hot film anemometry is the total heat dissipated from the film ( ). This information includes not
only heat transferred directly to the fluid, but also heat conducted to the substrate accounted for by 

 

B

 

 in
eq. 1. The distance the heat penetrates into the substrate increases with increasing substrate conductivity.
Any substrate will allow some heat to conduct parallel to the surface before it is removed by the fluid,
thus increasing the “effective length” of the hot film in the streamwise direction. The parameter 

 

A

 

 varies
inversely with the effective length.
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 Thus, a hot film substrate with a high-thermal conductivity will
have lower sensitivity (lower 

 

A

 

) and a larger conduction heat loss (larger 

 

B

 

). All hot film skin-friction
measurements must overcome this complication. The use of a low-thermal conductivity substrate can
reduce 

 

B

 

 and increase 

 

A

 

, making the hot film more sensitive to changes in skin friction.

This research investigates the possible advantages of using low-thermal conductivity ceramics for hot
film substrates. Hot films were deposited on two types of ceramic substrates. The first is a homogeneous
substrate fabricated from Macor

 

®

 

 (Corning, Inc., Corning, New York), a commercially available,
machinable ceramic. The second is a composite-ceramic substrate composed of high-temperature
reusable surface insulation (HRSI), a porous, low-density (  = 352 kg/m

 

3

 

) ceramic, and coated with
reaction cured glass (RCG), a high-density, nonporous glass. The RCG provides a tough exterior, and the
composite nature of the substrate allows for the installation of small TCs under the coating. The TCs are
positioned under the hot film and potentially can be used to estimate conduction heat loss. The ceramic
substrates will reduce the conduction heat loss, hopefully leading to increased sensitivity and a gage
better suited for measuring changes in skin friction.

A previous report
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 documented conjugate heat transfer studies of hot films on composite-ceramic,
Macor

 

®

 

, and quartz substrates. Time step constraints prevented modeling of the high-speed flows seen in
the tunnel experiment described in the succeeding paragraphs; however, the modeling that was done
confirmed the trend toward smaller film effective lengths with decreasing thermal conductivity. The
thermal properties are presented in the next section.

This report presents results from the hot film tests conducted in the NASA Glenn Research Center
(Cleveland, Ohio) 8-ft by 6-ft Supersonic Wind Tunnel (SWT). Data from zero flow to Mach 1.98 in air
were obtained and repeated (for some of the films) at different hot film overheats.

 

SENSOR DESCRIPTION

 

The composite-ceramic substrate is a cylinder, 12.70 mm in diameter and 15.88 mm long. Figure 1
shows a cross-sectional view. The RCG coating (approximately 0.127 mm thick) extends over the face of
the cylinder and approximately one-third of the way down the sides, thus providing a surface on which
the metallic hot film can be deposited. Figure 2 shows one of the hot film sensors (designated “CC1”) on
a composite-ceramic substrate. The sensor is potted into the white Macor

 

®

 

 sleeve. The RCG coating is so
thin that the three TC junctions are visible underneath. The hot film runs perpendicular to the lands of the
TCs, and the hot film leads run down the sides of the substrate to the end of the RCG coating. Small gage
wires are attached to the end of the leads with electrically conductive epoxy.

ρwτw( )
1 3⁄

A I
2
R

∆T
--------- 
  B–=

∆
I 2R

ρ



 

4

Wall
HRSI

RCG coating

TC leads

030027
12.70 mm

Hot film ⊥ to flow
Sleeve

Flow
direction

HRSI

Film ~ 0.1 µm

RCG ~ 0.127 mm

TC ~ 0.127 mm dia.

Not to scale

15.88 mm

Macor R

Figure 1. Cross section of composite-ceramic
hot film.

Figure 2. Hot film on composite-ceramic
substrate.
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The middle TC temperature of CC3 is approximately equal to, yet lower than, the right and left TC
temperatures, which probably reflects a nonuniform RCG coating thickness. Likewise, the right TC of
CC4 is the warmest of the CC4 TCs throughout the test, indicating that the right TC is under a thinner
RCG coating. Variations in coating thicknesses and uncertainties in the precise locations of the TC
junctions create difficulty in estimating the conduction heat loss component for these particular
prototypes. Nevertheless, improvements in packaging and coating control offer promise in this regard.

The higher temperature measured by the middle TC of CC2, relative to the middle TCs of the other
composite-ceramic sensors, indicates that heat is being conducted away from the films through the TC
wire, particularly in the case of CC1, CC3, and CC4 where the TC wire is perpendicular to the films.
These additional conduction paths raise the issue of whether or not the presence of the TCs is helping to
thwart the advantage of the low-thermal conductivity substrates. Testing another composite-ceramic hot
film without subsurface TCs installed would have been enlightening, but none was fabricated for this test.

CONCLUSIONS

Four novel hot films on low-thermal conductivity ceramic substrates with subsurface TCs, along with
two hot films on machinable ceramic substrates, were fabricated and tested in a supersonic wind tunnel.
Skin-friction results from two of the hot films on low-thermal conductivity substrates matched the control
measurement, from Mach 0.25 to nearly Mach 2, to within 3 percent. For the other two hot films on
low-thermal conductivity substrates, packaging and tunnel integration shortcomings might have led to
large discrepancies at supersonic Mach numbers; however, these sensors matched the control
measurement better at subsonic points than at supersonic points. The hot films on low-thermal
conductivity substrates showed lower zero-flow heat losses and offsets than those of the hot films on
machinable ceramic substrates. The subsurface TCs in the low-thermal conductivity substrates were
installed to estimate the conduction heat loss from the films. While the results are intriguing, coating
tolerance and TC position uncertainties prevented conduction estimates from these prototypes.
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